Понятие структурного анализаЖизненный цикл программного изделия и его критичные этапы В основе деятельности по созданию и использованию ПО лежит понятие его жизненного цикла (ЖЦ). ЖЦ является моделью создания и использования ПО, отражающей его различные состояния, начиная с возникновения необходимости в данном программном изделии и заканчивая моментом его полного выхода из употребления у всех пользователей. Традиционно выделяют следующие основные этапы ЖЦ ПО: анализ требований; проектирование; кодирование (программирование); тестирование и отладка; эксплуатация и сопровождение. ЖЦ образуется в соответствии с принципом нисходящего проектирования и, как правило, носит итерационный характер: реализованные этапы, начиная с самых ранних, циклически повторяются в соответствии с изменениями требований и внешних условий, введением ограничений и т.п. На каждом этапе ЖЦ порождается определенный набор документов и технических решений, при этом для каждого этапа исходными являются документы и решения, полученные на предыдущем этапе. Каждый этап завершается верификацией порожденных документов и решений с целью проверки их соответствия исходным. Существующие модели ЖЦ определяют порядок исполнения этапов в ходе разработки, а также критерии перехода от этапа к этапу. В соответствии с этим наибольшее распространение получили три следующие модели: КАСКАДНАЯ МОДЕЛЬ – предполагает переход на следующий этап после полного окончания работ по предыдущему этапу. ПОЭТАПНАЯ МОДЕЛЬ С ПРОМЕЖУТОЧНЫМ КОНТРОЛЕМ – итерационная модель разработки ПО с циклами обратной связи между этапами. Преимущество такой модели заключается в том, что межэтапные корректировки обеспечивают меньшую трудоемкость по сравнению с каскадной моделью; с другой стороны, время жизни каждого из этапов растягивается на весь период разработки. СПИРАЛЬНАЯ МОДЕЛЬ – делает упор на начальные этапы ЖЦ: анализ требований, проектирование спецификаций, предварительное и детальное проектирование. На этих этапах проверяется и обосновывается реализуемость технических решений путем создания прототипов. Каждый виток спирали соответствует поэтапной модели создания фрагмента или версии программного изделия, на нем уточняются цели и характеристики проекта, определяется его качество, планируются работы следующего витка спирали. Таким образом, углубляются и последовательно конкретизируются детали проекта и в результате выбирается обоснованный вариант, который доводится до реализации. Можно отметить следующие преимущества спиральной модели: накопление и повторное использование программных средств, моделей и прототипов; ориентация на развитие и модификацию ПО в процессе его проектирования; анализ риска и издержек в процессе проектирования. Главная особенность индустрии ПО состоит в концентрации сложности на начальных этапах ЖЦ (анализ, проектирование) при относительно невысокой сложности и трудоемкости последующих этапов. Более того, нерешенные вопросы и ошибки, допущенные на этапах анализа и проектирования, порождают на последующих этапах трудные, часто неразрешимые проблемы и, в конечном счете, приводят к неуспеху всего проекта. Рассмотрим эти этапы более подробно. АНАЛИЗ ТРЕБОВАНИЙ является первой фазой разработки ПО, на которой требования заказчика уточняются, формализуются и документируются. Фактически на этом этапе дается ответ на вопрос: "Что должна делать будущая система?". Список требований к разрабатываемой системе должен включать: совокупность условий, при которых предполагается эксплуатировать будущую систему (аппаратные и программные ресурсы, предоставляемые системе; внешние условия ее функционирования; состав людей и работ, имеющих к ней отношение); описание выполняемых системой функций; ограничения в процессе разработки (директивные сроки завершения отдельных этапов, имеющиеся ресурсы, организационные процедуры и мероприятия, обеспечивающие защиту информации). Целью анализа является преобразование общих, неясных знаний о требованиях к будущей системе в точные (по возможности) определения. На этом этапе определяются: архитектура системы, ее функции, внешние условия, распределение функций между аппаратурой и ПО; интерфейсы и распределение функций между человеком и системой; требования к программным и информационным компонентам ПО, необходимые аппаратные ресурсы, требования к БД, физические характеристики. ЭТАП ПРОЕКТИРОВАНИЯ дает ответ на вопрос "Как (каким образом) система будет удовлетворять предъявленным к ней требованиям?". Задачей этого этапа является исследование структуры системы и логических взаимосвязей ее элементов, причем здесь не рассматриваются вопросы, связанные с реализацией на конкретной платформе. Проектирование определяется как "(итерационный) процесс получения логической модели системы вместе со строго сформулированными целями, поставленными перед нею, а также написания спецификаций физической системы, удовлетворяющей этим требованиям". Обычно этот этап разделяют на два подэтапа: Проектирование архитектуры ПО, включающее разработку структуры и интерфейсов компонент, согласование функций и технических требований к компонентам, методам и стандартам проектирования, производство отчетных документов; Детальное проектирование, включающее разработку спецификаций каждой компоненты, интерфейсов между компонентами, разработку требований к тестам и плана интеграции компонент. В результате деятельности на этапах анализа и проектирования должен быть получен проект системы, содержащий достаточно информации для реализации системы на его основе в рамках бюджета выделенных ресурсов и времени. Идеи, лежащие в основе структурных методов Методы структурного анализа и проектирования стремятся преодолеть сложность больших систем путем расчленения их на части ("черные ящики") и иерархической организации этих черных ящиков. Выгода в использовании черных ящиков заключается в том, что их пользователю не требуется знать, как они работают, необходимо знать лишь его входы и выходы, а также его назначение (т.е. функцию, которую он выполняет). В окружающем нас мире черные ящики встречаются в большом количестве. Проиллюстрируем преимущества систем, составленных из них, на примере музыкального центра. Конструирование системы черных ящиков существенно упрощается. Намного легче разработать магнитофон или проигрыватель, если не беспокоиться о создании встроенного усилительного блока. Облегчается тестирование таких систем. Если появляется плохой звук одной из колонок, можно поменять колонки местами. Если неисправность переместилась с колонкой, то именно она подлежит ремонту; если нет, тогда проблема в усилителе, магнитофоне или местах их соединения. Имеется возможность простого ре-конфигурирования системы черных ящиков. Если колонка неисправна, то Вы можете отправить ее в ремонтную мастерскую, а сами пока продолжать слушать свои записи в моно-режиме. Облегчается доступность для понимания и освоения. Можно стать специалистом по магнитофонам без углубленных знаний о колонках. Увеличивается удобство при модификации. Вы можете приобрести колонки более высокого качества и более мощный усилитель, но это совсем не означает, что Вам необходим больших размеров проигрыватель. Таким образом, первым шагом упрощения сложной системы является ее разбиение на черные ящики, при этом такое разбиение должно удовлетворять следующим критериям: каждый черный ящик должен реализовывать единственную функцию системы; функция каждого черного ящика должна быть легко понимаема независимо от сложности ее реализации (например, в системе управления ракетой может быть черный ящик для расчета места ее приземления: несмотря на сложность алгоритма, функция черного ящика очевидна – "расчет точки приземления"); связь между черными ящиками должна вводиться только при наличии связи между соответствующими функциями системы (например, в бухгалтерии один черный ящик необходим для расчета общей заработной платы служащего, а другой – для расчета налогов; необходима связь между этими черными ящиками: размер заработанной платы требуется для расчета налогов); связи между черными ящиками должны быть простыми, насколько это возможно, для обеспечения независимости между ними. Второй важной идеей, лежащей в основе структурных методов, является идея иерархии. Для того, чтобы понять сложную систему, недостаточно разбить ее на части, необходимо эти части организовать определенным образом, а именно, в виде иерархических структур. Все сложные системы Вселенной организованы в иерархии. Да и сама она включает галактики, звездные системы, планеты, ..., молекулы, атомы, элементарные частицы. Человек при создании сложных систем также подражает природе. Любая организация имеет директора, заместителей по направлениям, иерархию руководителей подразделений, рядовых служащих. Наконец, третий момент: структурные методы широко используют графические нотации, также служащие для облегчения понятия сути сложных систем. Известно, что "одна картинка стоит тысячи слов". Рис. 1. Графическая нотация. На рис. 1 изображен черноволосый мужчина, одетый в серое двубортное пальто. Мужчина держит в левой руке дипломат и т.д. Вообще говоря, нет необходимости комментировать это: читатель впитывает вышеизложенное описание с первого взгляда. Однако можно добавить дополнительные подробности, которые не явствуют из рисунка. Например, мужчину зовут Борис Борисович, ему 45 лет. Структурные методы также позволяют дополнить "картинки" любой информацией, которая не может быть отражена при использовании соответствующей графической нотации. Принципы структурного анализа Анализ требований разрабатываемой системы является важнейшим среди всех этапов ЖЦ. Он оказывает существенное влияние на все последующие этапы, являясь в то же время наименее изученным и понятным процессом. На этом этапе, во-первых, необходимо понять, что предполагается сделать, а во-вторых, задокументировать это, т.к. если требования не зафиксированы и не доступны для участников проекта, то они вроде бы и не существуют. При этом язык, на котором формулируются требования, должен быть достаточно прост и понятен заказчику. Во многих аспектах системный анализ является наиболее трудной частью разработки. Нижеследующие проблемы, с которыми сталкивается системный аналитик, взаимосвязаны (и это является одной из главных причин их трудноразрешимости): аналитику сложно получить исчерпывающую информацию для оценки требований к системе с точки зрения заказчика; заказчик, в свою очередь, не имеет достаточной информации о проблеме обработки данных для того, чтобы судить, что является выполнимым, а что нет; аналитик сталкивается с чрезмерным количеством подробных сведений, как о предметной области, так и о новой системе; спецификация системы из-за объема и технических терминов часто непонятна для заказчика; в случае понятности спецификации для заказчика она будет являться недостаточной для проектировщиков и программистов, создающих систему. Конечно, применение известных аналитических методов снимает некоторые из перечисленных проблем анализа, однако эти проблемы могут быть существенно облегчены за счет применения современных структурных методов, среди которых центральное место занимают методологии структурного анализа. Структурным анализом принято называть метод исследования системы, которое начинается с ее общего обзора и затем детализируется, приобретая иерархическую структуру со все большим числом уровней. Для таких методов характерно разбиение на уровни абстракции с ограничением числа элементов на каждом из уровней (обычно от 3 до 6-7); ограниченный контекст, включающий лишь существенные на каждом уровне детали; дуальность данных и операций над ними; использование строгих формальных правил записи; последовательное приближение к конечному результату. Все методологии структурного анализа базируются на ряде общих принципов, часть из которых регламентирует организацию работ на начальных этапах ЖЦ, а часть используется при выработке рекомендаций по организации работ. В качестве двух базовых принципов используются следующие: "разделяй и властвуй" и принцип иерархического упорядочивания. Первый используется для решения трудных проблем путем разбиения их на множество меньших независимых задач, легких для понимания и решения. Второй принцип декларирует, что устройство этих частей также существенно для понимания. Понимаемость проблемы резко повышается при организации ее частей в древовидные иерархические структуры, т.е. система может быть понята и построена по уровням, каждый из которых добавляет новые детали. Однако стоит отметить, что остальные принципы структурного анализа являются не менее важными. Отметим основные принципы: Принцип абстрагирования заключается в выделении существенных с некоторых позиций аспектов системы и в отвлечении от несущественных с целью представления проблемы в простом общем виде. Принцип формализации заключается в необходимости строгого методического подхода к решению проблемы. Принцип упрятывания заключается в упрятывании несущественной на конкретном этапе информации: каждая часть "знает" только необходимую ей информацию. Принцип концептуальной общности заключается в следовании единой философии на всех этапах ЖЦ (структурный анализ – структурное проектирование – структурное программирование – структурное тестирование). Принцип полноты заключается в контроле на присутствие лишних элементов. Принцип непротиворечивости заключается в обоснованности и согласованности элементов. Принцип логической независимости заключается в концентрации внимания на логическом проектировании для обеспечения независимости от физического проектирования. Принцип независимости данных заключается в том, что модели данных должны быть проанализированы и спроектированы независимо от процессов их логической обработки, а также от их физической структуры и распределения. Принцип структурирования данных заключается в том, что данные должны быть структурированы и иерархически организованы. Принцип доступа конечного пользователя заключается в том, что пользователь должен иметь средства доступа к базе данных, которые он может использовать непосредственно (без программирования). Соблюдение указанных принципов необходимо при организации работ на начальных этапах ЖЦ независимо от типа разрабатываемого ПО и используемых при этом методологий. Средства структурного анализа и их взаимоотношения Для целей моделирования систем вообще и структурного анализа в частности используются три группы средств, иллюстрирующих: функции, которые система должна выполнять; отношения между данными; зависящее от времени поведение системы (аспекты реального времени). Среди всего многообразия средств решения данных задач в методологиях структурного анализа наиболее часто и эффективно применяемыми являются следующие: DFD (Data Flow Diagrams) – диаграммы потоков данных совместно со словарями и спецификациями процессов или миниспецификациями; ERD (Entity-Relationship Diagrams) – диаграммы "сущность-связь"; STD (State Transition Diagrams) – диаграммы переходов состояний. Все они содержат графические и текстовые средства моделирования: первые – для удобства демонстрирования основных компонент модели, вторые – для обеспечения точного определения ее компонент и связей. Логическая DFD показывает внешние по отношению к системе источники истоки (адресаты) данных, идентифицирует логические функции (процессы) и группы элементов данных, связывающие одну функцию с другой (потоки), а также идентифицирует хранилища (накопители) данных, к которым осуществляется доступ. Структуры потоков данных и определения их компонент хранятся и анализируются в словаре данных. Каждая логическая функция (процесс) может быть детализирована с помощью DFD нижнего уровня; когда дальнейшая детализация перестает быть полезной, переходят к выражению логики функции при помощи спецификации процесса (миниспецификации). Содержимое каждого хранилища также помещают в словаре данных, модель данных хранилища раскрывается с помощью ERD. В случае наличия реального времени DFD дополняется средствами описания, зависящего от времени поведения системы, раскрывающимися с помощью STD. Эти связи показаны на рис. 2. Перечисленные средства дают полное описание системы независимо от того, является ли она существующей или разрабатываемой с нуля. Таким образом строится логическая функциональная спецификация – подробное описание того, что должна делать система, освобожденное, насколько это возможно, от рассмотрения путей реализации. Это дает проектировщику четкое представление о конечных результатах, которых следует достигать.
Рис.2. Компоненты логической модели.
ДИАГРАММЫ ПОТОКОВ ДАННЫХ Диаграммы потоков данных (DFD) являются основным средством моделирования функциональных требований проектируемой системы. С их помощью эти требования разбиваются на функциональные компоненты (процессы) и представляются в виде сети, связанной потоками данных. Главная цель таких средств – продемонстрировать, как каждый процесс преобразует свои входные данные в выходные, а также выявить отношения между этими процессами. Диаграммы потоков данных известны очень давно. Приведу следующий пример использования DFD для реорганизации переполненного клерками офиса, относящийся к 20-м годам. Осуществлявший реорганизацию консультант обозначил кружком каждого клерка, а стрелкой – каждый документ, передаваемый ими друг другу. Используя такую диаграмму, он предложил схему реорганизации, в соответствии с которой двое клерков, обменивающиеся множеством документов, были посажены рядом, а клерки с малым взаимодействием были посажены на большом расстоянии. Так родилась первая модель, представляющая собой потоковую диаграмму – предвестника DFD. Для изображения DFD традиционно используются две различные нотации: Йодана (Yourdon) и Гейна-Сарсона (Gane-Sarson). Мы будем при построении примеров использовать нотации Йодана. |