Концепции современного естествознания. Часть I - Учебное пособие (Макаров В.М.)

Фундаментальные физические взаимодействия.

Частицы – переносчики взаимодействия.

В своей повседневной жизни человек сталкивается с множеством сил, действующих на тела: сила ветра или потока воды; давление воздуха; мощный выброс взрывающихся химических веществ; мускульная сила человека; вес предметов; давление квантов света; притяжение и отталкивание электрических зарядов; сейсмические волны, вызывающие часто катастрофические разрушения; вулканические извержения, приводящие к гибели цивилизаций и т. д. Одни силы действуют непосредственно при контакте с телом, другие, например гравитация, действуют на расстоянии через пространство. Но, как выяснилось в результате развития естествознания, несмотря на столь большое разнообразие, все действующие в природе силы можно свести к четырём фундаментальным взаимодействиям. Именно эти взаимодействия в конечном счёте отвечают за изменения в мире, именно они являются источником всех материальных преобразований тел, процессов. Каждое из четырёх фундаментальных взаимодействий имеет сходство с тремя остальными и в то же время свои отличия. Изучение свойств фундаментальных взаимодействий составляет главную задачу современной физики.

 

20. Гравитация.

Гравитация первым из четырех фундаментальных взаимодействий стала предметом научного исследования. Созданная в XVII веке ньютоновская теория гравитации (закон всемирного тяготения) позволил осознать истинную роль гравитации как силы природы. 28 апреля 1686 г. Ньютон представил Лондонскому Королевскому Обществу механику земных и небесных процессов. Это одна из величайших дат в истории человечества!

Гравитация обладает рядом особенностей отличающих ее от других фундаментальных взаимодействий. Наиболее удивительной особенностью является малая интенсивность. Гравитационное взаимодействие в 1039 раз меньше сил взаимодействия электрических зарядов. Как может такое слабое взаимодействие оказаться господствующей силой во Вселенной?

Если бы размеры атома водорода определялись гравитацией, а не взаимодействием между электрическими зарядами, то радиус низшей (самой близкой к ядру) орбиты электрона превосходил бы радиус доступный наблюдению части Вселенной.

Все дело во второй удивительной черте гравитации – ее универсальности. Ничто во Вселенной не сможет избежать гравитации. Каждая частица испытывает на себе действие, и сама является источником гравитации, вызывает гравитационное притяжение. Гравитация возрастает по мере образования все больших скопления вещества. И хотя притяжение одного атома пренебрежимо мало, но результирующая сила притяжения со стороны всех атомов может быть значительной. Это проявляется и в повседневной жизни: мы ощущаем гравитацию, потому что все атомы земли сообща притягивают нас, зато в микромире роль гравитации ничтожна. Никакие квантовые эффекты гравитации пока не доступны наблюдению.

Кроме того, гравитация – дальнодействующая сила природы. Это означает, что, хотя интенсивность гравитационного взаимодействия убывает с расстоянием, оно распространяется в пространстве и может сказываться на весьма удаленных от источника телах. В астрономическом масштабе гравитационные взаимодействие, как правило, играет главную роль. Благодаря дальнодействию гравитация не позволяет Вселенной развалиться на части, она удерживает планеты на орбитах, звезды в галактиках, галактики в скоплениях, скопления в метагалактике.

Сила гравитации, действующая между частицами всегда представляет собой силу притяжения: она стремится сблизить частицы. Гравитационное отталкивания еще никогда не наблюдались.

Хотя в традициях квазинаучной мифологии есть целая область, которая называется левитация – поиск «фактов» антигравитации.

Пока еще нет однозначного ответа на вопрос, чем является гравитация – неким полем, искривлением пространства – времени или тем и другим вместе. На этот счет существует разные мнения и концепции.

В одной из них высказывается мнение, что возможно существование и переносчика гравитационного поля – гравитона. Подобно фотонам, гравитоны движутся со скоростью света; следовательно, это частицы с нулевой массой покоя. Но этим сходство между гравитонами и фотонами исчерпывается. В то время как фотон имеет спин 1, спин гравитона равен 2. Это важное различие определяет направление силы. При электромагнитном взаимодействии одноименнозаряженные частицы (электроны) отталкиваются, а при гравитационном – все частицы притягиваются друг к другу. Поскольку гравитационные взаимодействие очень слабое и в квантовых процессах практически не проявляются, что непосредственно зафиксировать гравитоны очень сложно и пока не удалось, поэтому нет завершенной теории квантово-гравитационного взаимодействия.