12.3. эволюция экосистемыВопрос о том, как эволюционируют экосистемы, очень важен, поскольку его решение - ключ к пониманию существующего разнообразия сообществ живых организмов на нашей планете, смены флор и фаун в ходе ее геологической истории. В основе эволюции живых организмов лежит естественный отбор, действующий на видовом или более низких уровнях. Но естественный отбор играет также важную роль и на уровне экосистем. Его можно подразделить на взаимный отбор зависящих друг от друга автотрофов и гетерот-рофов (коэволюция) и групповой отбор, который ведет к сохранению признаков, благоприятных для экосистемы в целом, даже если они неблагоприятны для конкретных носителей этих признаков. В самом широком смысле коэволюция означает совместную эволюцию двух (или более) таксонов, которые объединены тесными экологическими связями, но которые не обмениваются генами. Естественный отбор, действующий в популяции хищников, будет постоянно увеличивать эффективность поиска, ловли и поедания добычи. Но в ответ на это в популяции жертвы совершенствуются приспособления, позволяющие особям избежать поимки и уничтожения, Следовательно, в процессе эволюции взаимоотношений «хищник-жертва" жертва действует так. чтобы освободиться от взаимодействия, а хищник - так, чтобы постоянно его поддерживать. Существуют бесчисленные способы, позволяющие жертвам противостоять давлению хищников. Их можно свести к следующим категориям: защитное поведение (бегство, затаивание, использование убежищ и т. п.). защитная форма и окраска (покровительственная, отпугивающая, предупреждающая. мимикрия), несъедобность или ядовитость (обычно в сочетании с предупреждающей окраской), родительское и социальное поведение (защита потомства, предупреждающие сигналы, совместная защита группы и т, п.). Защитные средства растений включают: жесткие листья, шипы и колючки, ядовитость, репеллентные и ингибирующие питание животных вещества. Хищники и другие «эксплуататоры" имеют не менее изощренные способы настигнуть жертву. Вспомним, например, общественное охотничье поведение львов и волков, загнутые ядовитые зубы змей. длинные липкие языки лягушек, жаб и ящериц, а также пауков и их паутину, глубоководную рыбу-удильщика или удавов, которые душат свои жертвы. Замечательным примером коэволюции служит связь между муравьями и одним из видов тропических акаций. Если искусственным путем удалить муравьев, то насекомые-фитофаги, которых обычно поедают муравьи, объедают все листья акации, после чего она гибнет. Таким образом, акация зависит от насекомых, защищающих ее от других насекомых. В сопряженную эволюцию может быть вовлечено не одно, а несколько звеньев пищевой цепи. Так, бабочки-монархи способны 146 накапливать в теле высокотоксичные сердечные гликозиды, содержащиеся в растениях с млечным соком, которыми питаются их гусеницы. Тем самым они обеспечивают себя высокоэффективной защитой против насекомоядных птиц. Таким образом, у бабочек выработалась способность не только питаться растениями, несъедобными для других насекомых, но и использовать яд растений для собственной защиты от хищников. Групповой отбор - это естественный отбор в группах организмов. не обязательно связанных тесными взаимодействиями. Предполагают, что он действует на уровне, более высоком, чем видовой, и ведет к повышению устойчивости экологических систем. Отношение генетиков к групповому отбору противоречиво. Вместе с тем эволюция вида имеет тенденцию к сохранению признаков, которые повышают устойчивость экосистем. Внутривидовая и межвидовая конкуренция приводят к эволюции нишевых различий. В свою очередь, существование таких различий гарантирует, что ресурсы данного сообщества, включая растения и животных, будут использованы более или менее пропорционально их эффективному запасу. Эволюция жертвы приводит к уменьшению энергии, переносимой с одного трофического уровня на другой и повышению устойчивости экосистемы, эволюция хищника - к возрастанию эффективности этого переноса и снижению устойчивости. Разнообразие видов жертв, добываемых хищником, а также способность последнего изменять свой рацион в ответ на изменение доступности жертвы, вероятно, влияют на устойчивость популяций жертвы, а следовательно, и на устойчивость сообщества. В эволюции экосистем происходит не только повышение устойчивости биотических сообществ. Подобно тому как индивидуальное развитие организма (онтогенез) представляет собой краткое повторение филогенеза.' так и эволюция экосистем повторяется в их сукцессионном развитии. Если мы сравним структуру экосистем в ранние и поздние геологические эпохи, то увидим, что в эволюции экосистем увеличивается их видовое разнообразие, замыкаются биогеохимические циклы, растет способность видов обеспечивать равномерное распределение ресурсов внутри системы и препятствовать их выходу из нее. Так же как в эволюции видов общее прогрессивное развитие сопровождается усложнением отдельных форм, так и в эволюции экосистем возникают такие экосистемы, которые регулируются К-отбором и осуществляют более совершенное перераспределение ресурсов. ' Филогенез - историческое развитие вида, к которому данный организм принадлежит. 147 Одним из свойств К-отбора является замедление темпов эволюционного преобразования. В насыщенной, хорошо сбалансированной экосистеме эволюция встречает множество препятствий: экологические ниши плотно заполнены, связи между группами сильны. Шансы проникнуть извне в такую систему имеют только более конкурентоспособные виды, число которых весьма ограничено. Следовательно, сбалансированность экосистемы сильно тормозит эволюцию организмов. Наибольшую возможность эволюционировать имеют крупные позвоночные животные. Они обычно обитают в нескольких экосистемах и оказывают сравнительно малое воздействие на других членов сообщества. Поэтому изменения крупных позвоночных влияют зачастую только на крупных же позвоночных (в системе хищник-жертва) и мало сказываются на стабильности системы. Мелкие животные, напротив, благодаря своей высокой продуктивности играют значительную роль в сообществе, и потому в зрелых экосистемах эволюционируют медленно, несмотря на большие потенциальные возможности: высокую плодовитость, короткие жизненные циклы, частую смену поколений. Темпы эволюции экосистемы резко меняются при крупномасштабных стрессах. Любой фактор, способный вывести экосистему из стабилизированного состояния, кладет начало более быстрым темпам эволюции. В качестве таких факторов могут выступать глобальные изменения климата, геологические процессы, массовая иммиграция при соединении материков и т- д. На фоне разрушенных прежних связей происходит лавиноподобное образование новых видов. Образуются новые крупные таксоны, т, е. эволюция приобретает характер макроэволюции. Естественно, этот процесс занимает миллионы лет- Подобные явления, которыми богата история Земли (меловой кризис и т. п.), называются экологическими кризисами, Примером экологического кризиса могут служить кардинальные изменения в биосфере, произошедшие в середине мелового периода, около 95-105 млн лет назад. В отложениях мелового времени в большом количестве появляются остатки цветковых растений. Ботаники считают, что эта группа возникла значительно раньше, но долгое время не играла существенной роли в биосфере. Отдельные находки пыльцы встречаются в нижнем мелу, там же обнаружены и первые остатки листьев этих растений. К концу нижнего мела таких остатков становится значительно больше. Основной перелом совершился приблизительно в течение 20 млн лет в конце раннего - начале позднего мела, В позднем мелу покрытосеменные обильно представлены уже повсеместно - их экспансия приобретает глобальный характер. Одновременно вымирает большинство ранее многочисленных растений (беннеттитовые. саговники). На тот же период приходится пик вымирания семейств насекомых и обновление их фауны. Эти изменения в мире растений и насекомых не могли не сказаться и на наземных позвоночных. Известно, что число видов наиболее изученной группы - динозавров - сильно уменьшилось в середине мела, хотя их полное вымирание произошло позднее. Значительные изменения испытали и другие группы рептилий - ящерицы, черепахи, крокодилы; змеи впервые появились в 148 позднем мелу. К концу нижнего мела относятся первые находки плацентарных млекопитающих. Возможно, что в мелу уже были богато представлены птицы. Таким образом, экспансия покрытосеменных и вытеснение ими господствовавших ранее продуцентов приводит к почти полной смене фауны. Смена фауны насекомых - следствие изменений в составе растительности: насекомые самым непосредственным образом связаны с растительностью: опыление, питание, создаваемый растениями микроклимат. Изменение состава позвоночных было вызвано преобразованиями не только в мире растений, но и изменением состава насекомых. Более того, обладая иным. чем у доминировавших ранее групп растений метаболизмом, покрытосеменные должны были изменить химический состав среды своего обитания и сделать ее непригодной для жизни многих организмов, с которыми они прямо не конкурировали. Преобразованиям могла подвергнуться атмосфера, почвы и водоемы. Смена растительности оказала воздействие на сток рек, распределение почвенных вод, атмосферную циркуляцию, а через вариации содержания углекислоты в атмосфере - на атмосферный баланс планеты. Покрытосеменные обусловили предпосылки для формирования новых сообществ, которые в отличие от старых первоначально были ненасыщены и потому нестабильны. Обилие незаполненных ниш и слабая конкуренция вызвали компенсаторные эволюционные преобразования и появление новых групп из уцелевших остатков прежней фауны. Скорость этого процесса, вначале небольшая, увеличилась с ускорением вымирания древней фауны, а затем. по мере насыщения экосистем, вновь уменьшилась. Сложившиеся в результате новые стабильные сообщества сохранили свои главные черты до наших дней- Сведения о меловом экологическом кризисе дают возможность сделать ряд выводов, непосредственно связанных с проблемами охраны природы. Эффект, произведенный в экосистемах внедрением покрытосеменных растений, был тем самым эффектом, которого стремится избежать человечество. Его размах красноречиво свидетельствует о размерах экологической опасности. Достаточно сказать, что для выхода экосистем из состояния кризиса потребовалось более 30 млн лет - геологически длительный отрезок времени. Другой вывод касается самого характера кризиса. Во-первых, распад экосистем происходит скачкообразно. Во-вторых, он вызывает компенсаторные эволюционные явления и возникновение новых групп организмов - происходит одновременная эволюция множества растений и животных. Возникает реальная угроза лавинообразного формирования новых видов организмов с непредсказуемыми свойствами! Насколько радикально новыми могут быть эти свойства, видно хотя бы из того факта, что в ходе мелового кризиса появились все общественные насекомые - термиты, муравьи, осы и пчелы, тогда как до этого насекомых с социальным образом жизни не существовало. |
|