Економетрія - Навчальний посібник (Наконечний С.І., Терещенко Т.О., Романюк Т.П.)

2.2. приклади економетричних моделей

2.2.1. Приклад 1. Виробнича функція Кобба — Дугласа

Виробнича функція — це економетрична модель, яка кількісно описує зв’язок основних результативних показників виробничо-господарської діяльності з факторами, що визначають ці показники. До основних показників можна віднести дохід, прибуток, рентабельність, продуктивність праці, собівартість і т.ін.

Перше поняття виробничої функції пов’язане з математичним моделюванням технологічної залежності між обсягом продукції, що випускається, і кількісними характеристиками витрат ресурсів. Звідси і назва функції «виробнича». Уперше така функція була побудована американськими дос­лідниками Коббом і Дугласом ще в 30-ті роки ХХ ст. за даними про функ­ціонування обробної промисловості США протягом двадцяти років і є класичним прикладом економетричного моделювання.

Функція Кобба — Дугласа (CDPF) належить до найвідоміших виробничих функцій, що набули широкого застосування в економічних дослі­дженнях, особливо на макрорівні. Класична виробнича функція Кобба — Дугласа має вигляд

                Y = aFaL1–a,      (2.4)

де  Y — обсяг продукції; F — основний капітал; L — робоча сила.

У цій функції параметри a, a і 1 — a  є невід’ємними. Таке твердження можна довести, якщо з виробничої функції виключити один з факторів. Для цього, поділивши ліву і праву частини залежності Y = f(F,L) на L, дістанемо функцію двох змінних

W = f(V),

де  — продуктивність праці;  — фондоозброєність праці.

Нехай залежність між W і V має вигляд степеневої функції, тобто

W = aVa.

Підставивши в цю функцію  і , дістанемо:

,     або     Y = aFaL1 – a.

Сума параметрів або степінь однорідності, класичної функції Кобба — Дугласа дорівнює одиниці. А це означає, що при збільшенні обох виробничих ресурсів на одиницю обсяг продукції також збільшиться на одиницю. Отже, ефективність ресурсів у такому разі стала.

Практичні дослідження функції Кобба — Дугласа показали, що припущення про лінійну однорідність на практиці виконується рідко. Тому була запропонована виробнича функція загальнішого вигляду

                Y = aFaLb.           (2.5)

Сума параметрів (a + b) на відміну від попереднього випадку може бути як меншою, так і більшою від одиниці. Якщо (a + b) > 1, то темпи росту обсягу продукції вищі за темпи росту виробничих ресурсів, а якщо (a + b) < 1, то, навпаки, темпи росту продукції нижчі за темпи росту ресурсів.

Припустимо,що рівень кожного виробничого ресурсу збільшився на r \%, тоді величини їх дорівнюватимуть  і .

Обсяг продукції на основі виробничої функції запишеться так:

Звідси при a + b > 1 обсяг продукції зростає більш ніж на r \%; при a + b < 1 — менш ніж на r \%; при a + b = 1 продукція збільшиться на r \%. Визначивши окремі коефіцієнти еластичності для виробничої функції Кобба — Дугласа, дістанемо:

Це означає, що граничний приріст продукції за рахунок приросту кожного ресурсу визначається як добуток коефіцієнта еластичності на середню ефективність ресурсу. Параметр a у функції Кобба — Дугласа залежить од вибраних одиниць вимірювання Y, F, L; водночас числове значення цього параметра визначається також ефективністю виробничого процесу. У цьому можна переконатись, порівнявши дві виробничі функції, які відрізня­ються одна від одної лише значенням параметра a.

Для фіксованих значень F і L тій функції, в якої більше числове значення параметра a, відповідає більше значення Y. Отже, і виробничий процес, який описується цією функцією, буде ефективнішим. Другі похідні функції Кобба — Дугласа мають такий вигляд:

Узявши до уваги, що 0 < a < 1 і 0<b<1, YFF < 0 і YLL < 0, дійдемо висновку: при збільшенні ресурсів граничний приріст обсягу продукції зменшуватиметься. Якщо обсяг продукції у функції Кобба — Дугласа вважати сталим (таким, що дорівнює const), то можна обчислити граничні норми заміщення ресурсів:

Звідси бачимо, що гранична норма заміщення ресурсів у функції Кобба — Дугласа визначається як добуток співвідношень величин ресурсів та їх коефіцієнтів еластичності.

Швидкість зміни норми заміщення ресурсів у зв’язку зі зміною величини ресурсів обчислюється так:

     

Мірою швидкості зміни h є еластичність заміщення ресурсів F і L, що визначається  як відношення зміни величини ресурсів до зміни величини h:

.

Отже, еластичність заміщення в кожній точці кривої, що характеризує виробничу функцію Кобба — Дугласа, дорівнює одиниці.

Розглянемо тепер поводження функції при зміні масштабу виробництва. Для цього припустимо, що витрати кожного ресурсу виробництва збільшилися в l раз, тоді нове значення Y визначатиметься так:

Y = a(lF)a(l L)b = la + bY.

Степінь однорідності цієї функції дорівнює a + b. Якщо a + b = 1, то рівень ефективності ресурсів не залежить від масштабів виробництва. Якщо a + b < 1, то з розширенням масштабів виробництва середні витрати в розрахунку на одиницю продукції зменшуються, а при a + b > 1 — збільшуються. Причому ці властивості не залежать від числових значень F і L і зберігають силу в кожній точці виробничої функції.

За припущення, що мета господарської діяльності — максимізація прибутку, можна проілюструвати інші властивості виробничої функції. Запишемо функцію прибутку:

П = bY r + 1– wL – rF + l [ f(F,L) – Y ].

Підприємець вибирає такі значення Y, L, F, які максимізують прибуток при обмеженнях, що накладаються виробничою функцією. Величини b, w, r — параметри функції прибутку, l — множник Лагранжа. Якщо виробничий процес у даному співвідношенні описується функцією Кобба — Дугласа, то можна записати умови максимізації прибутку:

      ,

l = (r + 1)P  при  r ¹ – 1,  де  P = bY r.

Звідси обсяги ресурсів такі:

   

У такому випадку максимальне значення випуску продукції, якщо a + b ¹ 1, можна записати так:

При  r = 1 згідно із записаними щойно умовами максимізації дістанемо:

        

Отже, необхідні умови для забезпечення максимізації прибутку дають змогу визначити відповідні витрати робочої сили і основного капіталу. З розширенням масштабів виробництва ефективність витрат ресурсів падає, що відповідає максимізації прибутку в умовах досконалої конкуренції. Наведений приклад виробничої функції показує, що ця економетрична модель дає змогу досить широко проаналізувати виробничу діяльність, визначити шляхи її вдосконалення з метою підвищення ефективності. Обгрунтованість такого аналізу повністю залежить од вірогідності економетричної моделі, від того, наскільки вона адекватна реальному процесу.

Проблема побудови виробничої функції або інших технологічних взаємозалежностей у виробництві — класична проблема економетрії, висвітлюється далі.

2.2.2. Приклад 2. Моделі пропозиції і попиту на конкурентному ринку

На конкурентному ринку рівновага обміну встановлюється через рівновагу між пропозицією і попитом. Нехай g1 і g2 — кількість попиту і пропозиції деякого продукту в певний день на деякому ринку; p — ціна, за якою реалізується продукція. Величини g1 і g2 залежать від  p, оскільки ціна не влаштовує покупців і продавців, то кількість проданого товару зменшується. У результаті можна записати дві функції:

g1 = f(p, u) — функцію попиту;

     g2 = Y(p, e) — функцію пропозиції.

Знаючи ціну p, можна визначити величини попиту і пропозиції. Для існування рівноваги на ринку необхідно, щоб виконувалась рівність. Отже, модель має такий вигляд:

                g1 = g2 ;

                g1 = f(p, u);           (2.6)

                g2 = Y(p, e).

До неї входять дві функції, що характеризують залежність попиту і пропозиції від ціни, а також тотожність.

В реальних умовах попит і пропозиція певного товару залежать не лише від його ціни, а й від цін товарів, які можуть заміняти або доповнювати розглядуваний товар. Попит і пропозиція залежать також від інших чинників, наприклад, попит залежить від доходу покупців, а пропозиція від виробничих умов і т.ін. Тоді модель (2.6) можна записати так:

g1t = f(pt , X1t , X2t , ... Xmt , ut);

                g2t = Y(pt – 1, X1t , X2t , ... Xmt , et );            (2.7)

g1t  = g2t .

В цій моделі на відміну від попередньої попит у періоді t залежить від ціни в цьому самому періоді, а пропозиція в періоді t залежить від ціни попереднього періоду (t – 1).

Нехай залежність попиту і пропозиції від факторів, що впливають на них, лінійна. Тоді економетрична модель запишеться так:

g1t = a0 + a1pt + a2X1t + a3X2t + ... + am Xmt + ut ;

                g2t = b0 + b1pt – 1 + b2X1t + b3X2t  + ... + bm Xmt  + et ;        (2.8)

g1t = g2t .

Щоб оцінити параметри цієї моделі, необхідно застосувати один з численних економетричних методів, які розглядаються далі.

2.2.3. Приклад 3. Модель Кейнса

Класична економічна теорія не вивчала спеціально фаз безробіття. Вона розглядала їх як тимчасові випадковості і довгостроковими проблемами рівноваги і росту цікавилася більше, ніж короткостроковими змінами. Проте протягом 1930–1940 рр. у переважній більшості розвинених країн спостерігалося тривале масове безробіття. Щоб передбачити розвиток економіки та вжити певних заходів впливу на економічний розвиток, потрібно було знати, як в даний момент фіксувати рівень випуску продукції та зайнятості і чому остання не буває ні дуже високою, ні дуже низькою.

Розв’язання цієї проблеми був головною турботою Кейнса. Він намагався пояснити рівень виробництва в період неповного завантаження робочої сили та обладнання. Згодом численні дослідники вивчали це питання, намагаючись висвітлити нечіткі місця теорії Кейнса або запропонувати власні розв’язання. Ці намагання привели до висновків, що капіталовкладення відіграють основну роль в кон’юнктурній еволюції з двох причин:

1) рішення про інвестиції значною мірою є автономними, вони впливають на зростання обсягів виробництва у двох секторах — предметів споживання та засобів виробництва;

2) зростання обсягів виробництва збільшує доходи, а останні, у свою чергу, впливають на збільшення обсягу виробництва предметів споживання.

Покажемо, як наведені щойно міркування можна спрощено подати у вигляді моделі.

Нехай P — загальний обсяг продукції; C — виробництво предметів споживання; I — виробництво засобів виробництва (що дорівнює капітало­вкладенням); R — доходи, які розподіляються. тоді модель запишеться так:

P = C + I ;

C = F(R, u);

R = P.

У цій моделі I задається автономно, а F є функція, що визначає відповідність між споживанням і розподіленими доходами.

Наведена модель дуже спрощена і повністю не відтворює ні ідей Кейнса, ні справжньої складності фактів. Проте вона порівняно добре пояснює досягнутий рівень виробництва. Адже з трьох записаних щойно рівнянь можна дістати таке рівняння:

                P – F(R,u) = I.       (2.9)

Розв’язавши його відносно P, знайдемо рівень виробництва, який пов’язаний з рівнем капіталовкладень. Так, наприклад, якщо F(R) є лінійна функція

                ,               (2.10)

то рівняння (2.9) набирає вигляду

,

звідки

                                (2.11)

Рівняння (2.11) визначає залежність обсягу виробництва P від обсягу капіталовкладень I, які задаються автономно. Коефіцієнти  і  в цьому рівнянні залежать від функції споживання (2.10), тобто від зв’язку між R і C. Зокрема, ця функція вимірює збільшення споживання , яке пов’язане зі збільшенням доходу на одиницю і називається «граничною схильністю до споживання». Значення , як правило, менше за одиницю. Зокрема, у моделі Кейнса  = 0,6. Залежність (2.11) показує при цьому, що збільшення капіталовкладень на одиницю зумовлює зростання обсягу виробництва на 1/(1 – ) — коефіцієнт, який завжди перевищує одиницю (при  = 0,6 маємо 1/1 –  = 2,5). Цей коефіцієнт вимірює ефект взаємозв’язку між автономним зростанням капіталовкладень та обсягом виробництва і називається мультиплікатором.

Модель (2.8) формалізує теорію Кейнса в її найпростішому вигляді. Але цінність згаданої моделі виходить за ці межі, бо вона дає змогу вивчати різні конкретні питання економічної кон’юнктури в країні, для якої було б знайдено адекватну форму функції F(R, u). Для забезпечення надійності результатів необхідно, щоб модель з потрібним ступенем точності відповідала дійсності, але досягти цього за такої вельми віддаленої схематизації не можна. Кон’юнктурні моделі, застосовувані для короткострокового прогнозування, використовують набагато більше змінних і рівнянь, але їх логічна природа досить близька до природи моделі (2.8).

2.2.4. Приклад 4. Модель споживання

Метою функціонування виробничих систем є виробництво матеріальних благ, які споживаються одразу після їх виробництва або надходять у запаси, щоб споживатися в майбутньому. Тому питання про те, як змоделювати використання матеріальних благ, посідають важливе місце серед проблем математичного моделювання виробничо-технічного рівня економічних систем. Усі види споживання (використання) матеріальних благ можна розбити на дві великі групи: виробниче і невиробниче споживання. Виробниче споживання пов’язане з використанням матеріальних благ у процесі виробництва у вигляді сировини, основних фондів і т.ін. Невиробниче споживання — це задоволення потреб людей (як окремих осіб, так і суспільства в цілому), тобто це насамперед товари народного споживання. потреба в них значною мірою визначає структуру та обсяг виробництва в цілому.

Ціль вивчення обсягу споживання — це пошук умов зміни споживання деякого товару або групи товарів залежно від їх ціни, доходів та інших істотних параметрів. Виявлення закономірностей зміни споживання базується на результатах спостережень. Наприклад, вивчивши споживання окремих сімей протягом деякого часу, визначають зміну споживання того чи іншого товару при загальному підвищенні доходів. Ці дослідження використовують деякі гіпотези щодо стабільності залежностей між споживанням і факторами, які його визначають. Постає запитання: чи можна кореляцію, що спостерігається для однієї обмеженої вибірки, інтерпретувати як доказ існування залежності в загальнішому випадку? При цьому гіпотези, які є основою для вивчення споживання, можна зобразити формально з допомогою моделі.

Нехай Ci — споживання деякого продукту і-ю сім’єю, дохід якої дорівнює ri. Припустимо, що для даного періоду відомі значення Ci і ri для невеликої кількості сімей. Як вивести звідси закономірність, на підставі якої можна визначити споживання даного продукту кожною сім’єю і в кожний період?

Найпростіший підхід полягає в ствердженні існування деякого точного функціонального зв’язку між Ci і ri, який не залежить від часу або від окремих характеристик кожної сім’ї. Тоді модель можна подати у вигляді

                Ci = f (ri).               (2.12)

Проте неважко констатувати неадекватний характер цієї гіпотези і цієї моделі. Насправді вони припускають, що дві сім’ї з одним і тим самим доходом мають однакове споживання, а це, взагалі кажучи, неправильно, тому від моделі (2.12) потрібно відмовитися.

Перше узагальнення може полягати в тому, щоб крім доходу розглянути й інші незалежні змінні: ціну, склад сім’ї, величину наявних коштів і т.ін. Тоді можна повністю описати споживання, але суто функціональний зв’язок лишиться недосяжним навіть за наявності п’яти і більше незалежних змінних. Дві сім’ї з однаковими доходами, структурним складом, заощадженнями тощо, все одно щодо споживання тих чи інших товарів поводитимуться по-різному.

Це означає, що в попередніх гіпотезах завжди має місце така фактична ситуація: споживання частково визначається не відомими нам факторами, які ми не можемо врахувати в моделі. Такі фактори є випадковими, і необхідно оцінити їх випадковий вплив. Для цього потрібно змінити модель (2.12), ввівши до неї випадкову складову:

                Ci = f(ri) + ui .       (2.13)

У моделі споживання випадкова складова містить у собі вплив усіх випадкових факторів, а також факторів, які не належать моделі. Ця складова називається помилкою, або залишком. Ці терміни, використовуватимемо далі під час викладання матеріалу.

Загальний вигляд моделі споживання залежно від доходу сім’ї такий:

                C = f(r) + u.           (2.14)

Якщо сукупність спостережень (кількість досліджуваних сімей) буде достатньою, щоб забезпечити вірогідність зв’язку, який визначається згідно з моделлю (2.14), то характеристики взаємозв’язку можуть бути поширені на певну групу населення країни. При цьому слід пам’ятати, що специфікація та методи оцінювання параметрів моделі також впливають на вірогідність зв’язку, що визначається економетричною моделлю.