Системный анализ и исследование операций - Учебное пособие (Силич В.А.)

2.2. понятие модели 

 

Множество окружающих нас предметов и явлений обладают различными свойствами. Процесс познания этих свойств состоит в том, что мы создаем для себя некоторое представление об изучаемом объекте, помогающее лучше понять его внутреннее состояние, законы функционирования, основные характеристики. Такое представление, выраженное в той либо иной форме, называется моделью. Как отмечается в [3], под моделью следует понимать любую другую систему, обладающую той же формальной структурой при условии, что между системными характеристиками модели и оригиналом существует соответствие, и она более проста и доступна для изучения и исследования основных свойств объекта-оригинала.

Любая модель есть объект-заменитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала.

Замещение одного объекта другим с целью получения информации о важнейших свойствах объекта-оригинала с помощью объекта-модели можно назвать моделированием, т.е. моделирование - это представление объекта моделью для получения информации об объекте путем проведения эксперимента с его моделью.

С точки зрения философии моделирование следует рассматривать как эффективное средство познания природы. При этом процесс моделирования предполагает наличие объекта исследования, исследователя-экспериментатора и модели.

В автоматизированных системах обработки информации и управления в качестве объекта моделирования могут выступать производственно-технологические процессы получения конечных продуктов; процессы движения документов, информационных потоков при реализации учрежденческой деятельности организации; процессы функционирования комплекса технических средств; процессы организации и функционирования информационного обеспечения АСУ; процессы функционирования программного обеспечения АСУ [2].

Преимущества моделирования состоят в том, что появляется возможность сравнительно простыми средствами изучать свойства системы, изменять ее параметры, вводить целевые и ресурсные характеристики внешней среды.

Как правило, моделирование используется на следующих этапах [2]:

исследования системы до того, как она спроектирована, с целью определения ее основных характеристик и правил взаимодействия элементов между собой и с внешней средой;

проектирования системы для анализа и синтеза различных видов структур и выбора наилучшего варианта реализации с учетом сформулированных критериев оптимальности и ограничений;

эксплуатации системы для получения оптимальных режимов функционирования и прогнозируемых оценок ее развития.

При этом одну и ту же систему можно описать различными типами моделей. Например, транспортную сеть некоторого района можно промоделировать электрической схемой, гидравлической системой, математической моделью с использованием аппарата теории графов.

Для исследования систем широко используются следующие типы моделей: физические (геометрического подобия, электрические, механические и др.) и символические (содержательные и математические).

Под математической моделью понимается совокупность математических выражений, описывающих поведение (структуру) системы и те условия (возмущения, ограничения), в которых она работает. В свою очередь, математические модели в зависимости от используемого математического аппарата подразделяются, например, на:

статические и динамические;

детерминированные и вероятностные;

дискретные и непрерывные;

аналитические и численные.

Статические модели описывают объект в какой-либо момент времени, а динамические отражают поведение объекта во времени. Детерминированные модели описывают процессы, в которых отсутствуют (не учитываются) случайные факторы, а вероятностные модели отражают случайные процессы - события. Дискретные модели характеризуют процессы, описываемые дискретными переменными, непрерывные - непрерывными. Аналитические модели описывают процесс в виде некоторых функциональных отношений или (и) логических условий. Численные модели отражают элементарные этапы вычислений и последовательность их проведения [2].

Если для описания системы используется естественный язык (язык общения между людьми), то такое описание называется содержательной моделью. Примерами содержательных моделей являются: словесные постановки задач, программы и планы развития систем, деревья целей организации и др. Содержательные модели имеют самостоятельную ценность при решении задач исследования и управления системами, а также используются в качестве предварительного шага при разработке математических моделей. Поэтому качество математической модели зависит от качества соответствующей математической модели [9].

В качестве языковых средств описания содержательных  моделей используются естественный язык (язык общения между людьми), диаграммы, таблицы, блок-схемы, графы.

Сложные системы потому и называются сложными, что они плохо поддаются формализации. Для них целесообразно использовать содержательные модели. Содержательные модели не заменимы на ранних этапах проектирования сложных систем, когда формируется концепция системы. Методы системного анализа, используя декомпозиционный подход, позволяют выявить упорядоченное множество подсистем, элементов, свойств системы и их связей. Интегрированная содержательная модель системы позволяет представить общую картину, составить обобщенное описание, в котором подчеркнуты основные сущности, а детали скрыты. Главное в такой модели - краткость и понятность. Такая модель может служить основой для построения более детальных моделей, описывающих отдельные аспекты, подсистемы. Таким образом, содержательная модель может служить каркасом для построения других моделей, в том числе и математических. Она служит также для структуризации информации об объекте [10].