Системное программное обеспечение - Учебное пособие (Терехин А.Н.)

3.3      аппарат системных вызов в oc unix.

Как известно, одной из основных функций любой ОС является управление ресурсами. Вынесение непосредственного доступа к ресурсам в зону ответственности ядра необходимо для того, чтобы обеспечить надежность и работоспособность всей вычислительной системы, так как невозможно гарантировать, что пользовательский процесс, получив непосредственный доступ к ресурсам вычислительной системы, будет работать с ними корректно. Кроме того, в многозадачной системе имеет место конкуренция процессов за ресурсы, и ОС должна здесь выполнять также функцию планирования доступа к ресурсам и защиты ресурсов, выделенных конкретному процессу, от несанкционированного доступа со стороны других процессов.

Чтобы обеспечить гарантии того, что определенные действия, такие как операции с ресурсами, планирование процессов и т.п., может выполнять только ОС, вычислительная система должна обладать определенными свойствами, и в частности, иметь привилегированный режим выполнения. Это означает, что в ВС имеется два режима выполнения: обычный (пользовательский) и привилегированный (иногда называемый также режимом ядра, или защищенным режимом). Существует набор операций (инструкций), которые не могут быть выполнены процессом, работающим в пользовательском режиме. Они доступны только в привилегированном режиме, в котором работает ядро ОС. Кроме того, процессу, работающему в пользовательском режиме, недоступно адресное пространство других процессов и адресное пространство ядра.

Итак, обычные процессы выполняются в пользовательском режиме, и им недоступны те операции, которые может выполнять ядро ОС, работающее в привилегированном режиме, в частности, непосредственный доступ к ресурсам. Каким же образом обычный процесс, работающий в пользовательском режиме, может все же получить возможность работать с ресурсами ВС, например, записывать данные в файл или выводить их на печать? Для обеспечения такой возможности вводится аппарат системных вызовов, посредством которых ядро предоставляет процессам определенный набор услуг.

С точки зрения пользовательского процесса, системные вызовы оформлены аналогично библиотечным функциям, и обращение к ним при программировании ничем не отличается от вызова обычной функции. Однако в действительности при обращении к системному вызову выполнение переключается в привилегированный режим, благодаря чему во время выполнения системного вызова процессу доступны все инструкции, в том числе и привилегированные, а также системные структуры данных. По завершении выполнения системного вызова выполнение процесса снова переключается в пользовательский режим. Таким образом, механизм системных вызовов, код которых является частью ядра, является для обычного пользовательского процесса единственной возможностью получить права для выполнения привилегированных операций, и тем самым обеспечивается безопасность системы в целом.

Так как любой процесс может в различные моменты своего выполнения находиться как в привилегированном режиме, так и в пользовательском режиме, то и виртуальное адресное пространство процесса состоит из двух частей: одна из них используется, когда процесс находится в пользовательском режиме, а другая – в привилегированном. Причем процессу, находящемуся в пользовательском режиме, недоступна та часть его виртуального адресного пространства, которая соответствует режиму ядра. На Рис. 8 показано отображение исполняемого файла на виртуальное адресное пространство процесса, которое производит ОС при запуске процесса.

Далее нами будут рассмотрены некоторые системные вызовы, предоставляемые ОС UNIX. К интересующим нас вызовам относятся вызовы

для создания процесса;

для организации ввода вывода;

для решения задач управления;

для операции координации процессов;

для установки параметров системы.

Отметим некоторые общие моменты, связанные с работой системных вызовов.

Большая часть системных вызовов определены как функции, возвращающие целое значение, при этом при нормальном завершении системный вызов возвращает 0, а при неудачном завершении -1[4]. При этом код ошибки можно выяснить, анализируя значение внешней переменной errno, определенной в заголовочном файле <errno.h>.

В случае, если выполнение системного вызова прервано сигналом, поведение ОС зависит от конкретной реализации. Например, в BSD UNIX ядро автоматически перезапускает системный вызов после его прерывания сигналом, и таким образом, внешне никакого различия с нормальным выполнением системного вызова нет. Стандарт POSIX допускает и вариант, когда системный вызов не перезапускается, при этом системный вызов вернет –1, а в переменной errno устанавливается значение EINTR, сигнализирующее о данной ситуации.